Расчет прямоугольного треугольника с катетом a=2 и углом β°=10
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты.
Ответ:
\(a=2\)
\(b=\mathtt{\text{0.352}}\)
\(c=\mathtt{\text{2.03}}\)
\(\mathtt{\text{80}}\)°
\(10\)°
h=\(\mathtt{\text{0.347}}\)
mc=\(\mathtt{\text{1.01}}\)
Гипотенуза c:
c = \(\frac{a}{\cos{β°}}\) = \(\frac{2}{\cos{(10°})}\) = \(\mathtt{\text{2.03}}\)Угол α°:
α° = \(90°-β°\) = \(90°-10°\) = \(\mathtt{\text{80}}°\)Высота h:
h = \(a·\sin{β°}\) = \(2·\sin{(10°)}\) = \(\mathtt{\text{0.347}}\)Катет b:
b = \(\sqrt{c^2 - a^2}\) = \(\sqrt{\mathtt{\text{2.03}}^2-2^2}\) = \(\sqrt{4.1209-4}\) = \(\sqrt{0.120899999999999}\) = \(\mathtt{\text{0.348}}\)или:
b = \(h·\frac{c}{a}\) = \(\mathtt{\text{0.347}}·\frac{\mathtt{\text{2.03}}}{2}\) = \(\mathtt{\text{0.352}}\)или:
b = \(c·\cos{α°}\) = \(\mathtt{\text{2.03}}·\cos{(80°)}\) = \(\mathtt{\text{0.353}}\)или:
b = \(c·\sin{β°}\) = \(\mathtt{\text{2.03}}·\sin{(10°)}\) = \(\mathtt{\text{0.353}}\)или:
b = \(\frac{h}{sin{α°}}\) = \(\frac{\mathtt{\text{0.347}}}{sin{(80°)}}\) = \(\mathtt{\text{0.352}}\)или:
b = \(\frac{h}{sin{β°}}\) = \(\frac{\mathtt{\text{0.347}}}{sin{(10°)}}\) = \(\mathtt{\text{0.352}}\)или:
b = \(\sqrt{\frac{c^2 - \sqrt{c^4-4·c^2·h^2}}{2}}\) = \(\sqrt{\frac{\mathtt{\text{2.03}}^2 - \sqrt{\mathtt{\text{2.03}}^4-4·\mathtt{\text{2.03}}^2·\mathtt{\text{0.347}}^2}}{2}}\) = \(\sqrt{\frac{4.1209-\sqrt{14.9970430176}}{2}}\) = \(\sqrt{0.124}\) = \(\mathtt{\text{0.352}}\)Площадь S:
S = \(\frac{hc}{2}\) = \(\frac{\mathtt{\text{0.347}}·\mathtt{\text{2.03}}}{2}\) = \(\mathtt{\text{0.352}}\)Радиус описанной окружности R:
R = \(\frac{c}{2}\) = \(\frac{\mathtt{\text{2.03}}}{2}\) = \(\mathtt{\text{1.01}}\)Медиана Mc:
mc = \(\frac{c}{2}\) = \(\frac{\mathtt{\text{2.03}}}{2}\) = \(\mathtt{\text{1.01}}\)Радиус вписанной окружности r:
r = \(\frac{a+b-c}{2}\) = \(\frac{2+\mathtt{\text{0.352}}-\mathtt{\text{2.03}}}{2}\) = \(\mathtt{\text{0.161}}\)Периметр P:
P = \(a+b+c\) = \(2+\mathtt{\text{0.352}}+\mathtt{\text{2.03}}\) = \(\mathtt{\text{4.38}}\)
Сохраните ссылку на это решение:
Скопировано