Расчет прямоугольного треугольника с катетом b=400 и углом β°=48
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты.
Ответ:
\(a=\mathtt{\text{360}}\)
\(b=400\)
\(c=\mathtt{\text{538}}\)
\(\mathtt{\text{42}}\)°
\(48\)°
h=\(\mathtt{\text{268}}\)
mc=\(\mathtt{\text{269}}\)
Гипотенуза c:
c = \(\frac{b}{\sin{β°}}\) = \(\frac{400}{\sin{(48°})}\) = \(\mathtt{\text{538}}\)Угол α°:
α° = \(90°-β°\) = \(90°-48°\) = \(\mathtt{\text{42}}°\)Высота h:
h = \(b·\cos{β°}\) = \(400·\cos{(48°)}\) = \(\mathtt{\text{268}}\)Катет a:
a = \(\sqrt{c^2 - b^2}\) = \(\sqrt{\mathtt{\text{538}}^2 -400^2}\) = \(\sqrt{289444-160000}\) = \(\sqrt{129444}\) = \(\mathtt{\text{360}}\)или:
a = \(h·\frac{c}{b}\) =\(\mathtt{\text{268}}·\frac{\mathtt{\text{538}}}{400}\) = \(\mathtt{\text{360}}\)или:
a = \(c·\sin{α°}\) = \(\mathtt{\text{538}}·\sin{(42°)}\) = \(\mathtt{\text{360}}\)или:
a = \(c·\cos{β°}\) = \(\mathtt{\text{538}}·\cos{(48°)}\) = \(\mathtt{\text{360}}\)или:
a = \(\frac{h}{cos{α°}}\) = \(\frac{\mathtt{\text{268}}}{cos{(42°)}}\) = \(\mathtt{\text{361}}\)или:
a = \(\frac{h}{sin{β°}}\) = \(\frac{(\mathtt{\text{268}})}{sin{(48°)}}\) = \(\mathtt{\text{361}}\)или:
a = \(\sqrt{\frac{c^2 + \sqrt{c^4-4·c^2·h^2}}{2}}\) = \(\sqrt{\frac{\mathtt{\text{538}}^2 + \sqrt{\mathtt{\text{538}}^4-4·\mathtt{\text{538}}^2·268^2}}{2}}\) = \(\sqrt{\frac{289444+\sqrt{621725712}}{2}}\) = \(\sqrt{1.57 \cdot 10^{5}}\) = \(\mathtt{\text{396}}\)Площадь S:
S = \(\frac{hc}{2}\) = \(\frac{\mathtt{\text{268}}·\mathtt{\text{538}}}{2}\) = \(\mathtt{\text{7.21e+04}}\)Радиус описанной окружности R:
R = \(\frac{c}{2}\) = \(\frac{\mathtt{\text{538}}}{2}\) = \(\mathtt{\text{269}}\)Медиана Mc:
mc = \(\frac{c}{2}\) = \(\frac{\mathtt{\text{538}}}{2}\) = \(\mathtt{\text{269}}\)Радиус вписанной окружности r:
r = \(\frac{a+b-c}{2}\) = \(\frac{\mathtt{\text{360}}+400-\mathtt{\text{538}}}{2}\) = \(\mathtt{\text{111}}\)Периметр P:
P = \(a+b+c\) = \(\mathtt{\text{360}}+400+\mathtt{\text{538}}\) = \(\mathtt{\text{1.3e+03}}\)
Сохраните ссылку на это решение:
Скопировано