Меню

Расчет прямоугольного треугольника с катетом a=5 и катетом b=\sqrt{3} и углом α°=30 и углом β°=60

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник

Ответ:
Прямоугольный треугольник
\(a=5\)
\(b=\sqrt{3}\)
\(c=\mathtt{\text{5.29}}\)
\(30\)°
\(60\)°
h=\(\mathtt{\text{0.866}}\)
mc=\(\mathtt{\text{2.65}}\)

Гипотенуза c:
c = \(\sqrt{a^2 + b^2}\) = \(\sqrt{5^2 +\sqrt{3}^2}\) = \(\sqrt{25+3}\) = \(\sqrt{28}\) = \(\mathtt{\text{5.29}}\)
или:
c = \(\frac{b}{\sin{β°}}\) = \(\frac{\sqrt{3}}{\sin{(60°})}\) = \(\mathtt{\text{2}}\)
или:
c = \(\frac{b}{\cos{α°}}\) = \(\frac{\sqrt{3}}{\cos{(30°})}\) = \(\mathtt{\text{2}}\)
или:
c = \(\frac{a}{\cos{β°}}\) = \(\frac{5}{\cos{(60°})}\) = \(\mathtt{\text{10}}\)
или:
c = \(\frac{a}{\sin{α°}}\) = \(\frac{5}{\sin{(30°})}\) = \(\mathtt{\text{10}}\)
Высота h:
h = \(b·\sin{α°}\) = \(\sqrt{3}·\sin{(30°)}\) = \(\mathtt{\text{0.866}}\)
или:
h = \(b·\cos{β°}\) = \(\sqrt{3}·\cos{(60°)}\) = \(\mathtt{\text{0.866}}\)
или:
h = \(a·\cos{α°}\) = \(5·\cos{(30°)}\) = \(\mathtt{\text{4.33}}\)
или:
h = \(a·\sin{β°}\) = \(5·\sin{(60°)}\) = \(\frac{5 \sqrt{3}}{2}\)
Площадь S:
S = \(\frac{ab}{2}\) = \(\frac{5·\sqrt{3}}{2}\) = \(\mathtt{\text{4.33}}\)
Радиус вписанной окружности r:
r = \(\frac{a+b-c}{2}\) = \(\frac{5+\sqrt{3}-\mathtt{\text{5.29}}}{2}\) = \(\mathtt{\text{0.721}}\)
Радиус описанной окружности R:
R = \(\frac{c}{2}\) = \(\frac{\mathtt{\text{5.29}}}{2}\) = \(\mathtt{\text{2.65}}\)
Периметр P:
P = \(a+b+c\) = \(5+\sqrt{3}+\mathtt{\text{5.29}}\) = \(\mathtt{\text{12}}\)
Медиана Mc:
mc = \(\frac{c}{2}\) = \(\frac{\mathtt{\text{5.29}}}{2}\) = \(\mathtt{\text{2.65}}\)
Сохраните ссылку на это решение:
Скопировано