Расчет прямоугольного треугольника с катетом b=1.35 и углом α°=15
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты.
Ответ:
\(a=\mathtt{\text{0.371}}\)
\(b=1.35\)
\(c=\mathtt{\text{1.4}}\)
\(15\)°
\(\mathtt{\text{75}}\)°
h=\(\mathtt{\text{0.349}}\)
mc=\(\mathtt{\text{0.7}}\)
Гипотенуза c:
c = \(\frac{b}{\cos{α°}}\) = \(\frac{1.35}{\cos{(15°})}\) = \(\mathtt{\text{1.4}}\)Угол β°:
β° = \(90°-α°\) = \(90°-15°\) = \(\mathtt{\text{75}}°\)Высота h:
h = \(b·\sin{α°}\) = \(1.35·\sin{(15°)}\) = \(\mathtt{\text{0.349}}\)Катет a:
a = \(\sqrt{c^2 - b^2}\) = \(\sqrt{\mathtt{\text{1.4}}^2 -1.35^2}\) = \(\sqrt{1.96-1.8225}\) = \(\sqrt{0.1375}\) = \(\mathtt{\text{0.371}}\)или:
a = \(h·\frac{c}{b}\) =\(\mathtt{\text{0.349}}·\frac{\mathtt{\text{1.4}}}{1.35}\) = \(\mathtt{\text{0.362}}\)или:
a = \(c·\sin{α°}\) = \(\mathtt{\text{1.4}}·\sin{(15°)}\) = \(\mathtt{\text{0.362}}\)или:
a = \(c·\cos{β°}\) = \(\mathtt{\text{1.4}}·\cos{(75°)}\) = \(\mathtt{\text{0.362}}\)или:
a = \(\frac{h}{cos{α°}}\) = \(\frac{\mathtt{\text{0.349}}}{cos{(15°)}}\) = \(\mathtt{\text{0.361}}\)или:
a = \(\frac{h}{sin{β°}}\) = \(\frac{(\mathtt{\text{0.349}})}{sin{(\mathtt{\text{75}}°)}}\) = \(\mathtt{\text{0.361}}\)или:
a = \(\sqrt{\frac{c^2 + \sqrt{c^4-4·c^2·h^2}}{2}}\) = \(\sqrt{\frac{\mathtt{\text{1.4}}^2 + \sqrt{\mathtt{\text{1.4}}^4-4·\mathtt{\text{1.4}}^2·0.349^2}}{2}}\) = \(\sqrt{\frac{1.96+\sqrt{2.88668016}}{2}}\) = \(\sqrt{1.83}\) = \(\mathtt{\text{1.35}}\)Площадь S:
S = \(\frac{hc}{2}\) = \(\frac{\mathtt{\text{0.349}}·\mathtt{\text{1.4}}}{2}\) = \(\mathtt{\text{0.244}}\)Радиус описанной окружности R:
R = \(\frac{c}{2}\) = \(\frac{\mathtt{\text{1.4}}}{2}\) = \(\mathtt{\text{0.7}}\)Медиана Mc:
mc = \(\frac{c}{2}\) = \(\frac{\mathtt{\text{1.4}}}{2}\) = \(\mathtt{\text{0.7}}\)Радиус вписанной окружности r:
r = \(\frac{a+b-c}{2}\) = \(\frac{\mathtt{\text{0.371}}+1.35-\mathtt{\text{1.4}}}{2}\) = \(\mathtt{\text{0.161}}\)Периметр P:
P = \(a+b+c\) = \(\mathtt{\text{0.371}}+1.35+\mathtt{\text{1.4}}\) = \(\mathtt{\text{3.12}}\)
Сохраните ссылку на это решение:
Скопировано